

44[™] ASECAP STUDY & INFORMATION DAYS 2016 GNSS Adoption for Road User Charging in Europe

Alberto Fernandez-Wyttenbach

Intercontinental Hotel 25 May 2016

www.asecapdays.com

NAVIGATION SOLUTIONS POWERED BY EUROPE

The present presentation can be interpreted only together with the oral comment accompanying it

Why GNSS for Road User Charging?

FLEXIBILITY

Rapid changes can be implemented

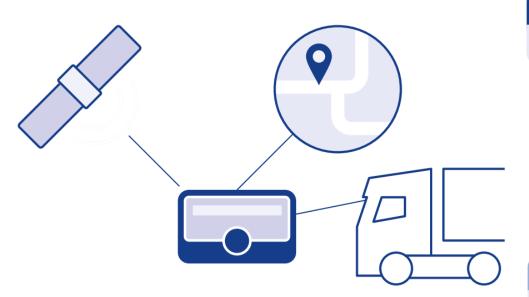
EXTENSIBILITY

Example of a network extension in 3 months

REVENUE POTENTIAL

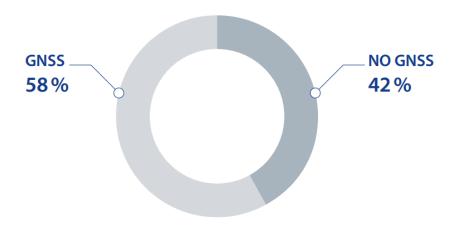
SP can include several VAS to their offer

ENVIRONMENT (AND COST)

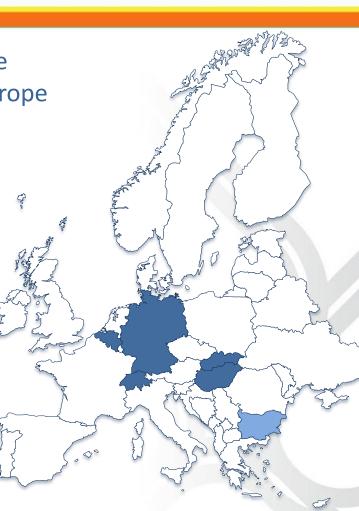

Around 80% less roadside infrastructure

TRAFFIC MANAGEMENT

Dynamically influence traffic behavior

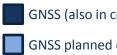

LOW TRANSACTION COSTS

Data traffic costs already @ approx. 2€/month



GNSS RUC for Heavy Goods Vehicles now

- The advantages of using GNSS for tolling HGV have already been demonstrated and understood in Europe
- GNSS-based RUC system for c. 16,000 km in procurement process in Bulgaria
- 58% of tolled kilometres (i.e. 43,000)
 correspond to a GNSS scheme*

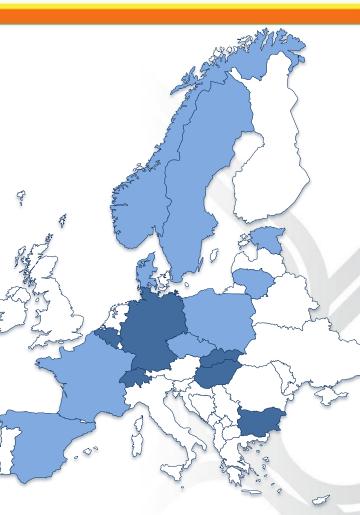


*from April 2016, excluding e-Vignette and analysing only EETS-compliant EU28 countries

ASECAP DAYS

MADRID 2016

GNSS (also in conjunction with other technologies)


GNSS planned (currently under development)

... and in the mid-term

ASECAP DAYS

- Czech Republic → GNSS technology under study for the upgrade of the current HGV system
- Denmark → trials with GNSS technology ongoing in the Greater Copenhagen Area
- Sweden

 extensive road network with a small share of motorways and expressways and good quality of secondary roads: GNSS looks to be the most suitable solution
- Spain → Studies currently ongoing on a GNSSbased road taxation on both highways and lower class roads

GNSS (also in conjunction with other technologies)

GNSS possible (currently under evaluation)

The Spanish case: Key elements

- Vast high capacity road network mostly under National or Regional control, of which considered for the analysis:

 11,676 km → highways and motorways (71%);
 1,633 km → dual carriageways (10%); and
 3,146 km → first class parallel roads (19%)
- Situation similar to that faced in Germany a decade ago → GNSS proved extremely successful, exceeding the initial assumptions on efficiency
- Retro compatible with currently tolled network (3,404 km) → combined OBU (GNSS/ DSRC) delivered by multiple service providers
- Multiple service providers → high competition and possibility of innovative value-added services mean better and more competitive services for users

The Spanish case: Analysed variables and scenarios

MONETARY BENEFITS	Revenues from tolling schemes	
	Revenues from OBU rental/ selling and tolling service fee	
	Revenues generated by VAS	
SOCIAL BENEFITS	Travel time reduction	
	Fuel consumption reduction	Ma
	Climate change (CO2 emissions reduction)	
	Car accidents reduction	
	Dangerous goods tracking and fleet management savings	
САРЕХ	Roadside equipment investment	
	OBU equipment cost	
	OBU supply cost	
	OBU replacement cost	
	Core infrastructure & multi service gateway systems and applications cost	
	Start-up user support cost	
	Mobile enforcement equipment cost	
	Mobile enforcement replacement cost	
OPEX	Roadside equipment maintenance cost	
	Frauds and incorrect tolling cost	
	Core infrastructure operation and maintenance cost	
	Data traffic cost	
	OBU to infrastructure data traffic cost	
	OBU maintenance cost	
	Selling, general and administrative cost	
	Mobile enforcement cost	

Scenario 1: Mandatory OBU for HGV only

The Spanish case: Scenario 1: Mandatory OBU for HGV

Key investments, first 3 years (values in €m)

Roadside equipment investment

Mobile enforcement equipment cost

OBU equipment cost

Start-up user support cost

Core infrastructure

DSRC

TOTAL

GNSS	2016	2017	2018
Roadside equipment investment	-99	-	-
OBU equipment cost	-98	-15	-15
Core infrastructure	-64	-	-
Start-up user support cost	-2	-	-
Mobile enforcement equipment cost	-30	-	-
TOTAL	-293	-15	-15

2016

-402

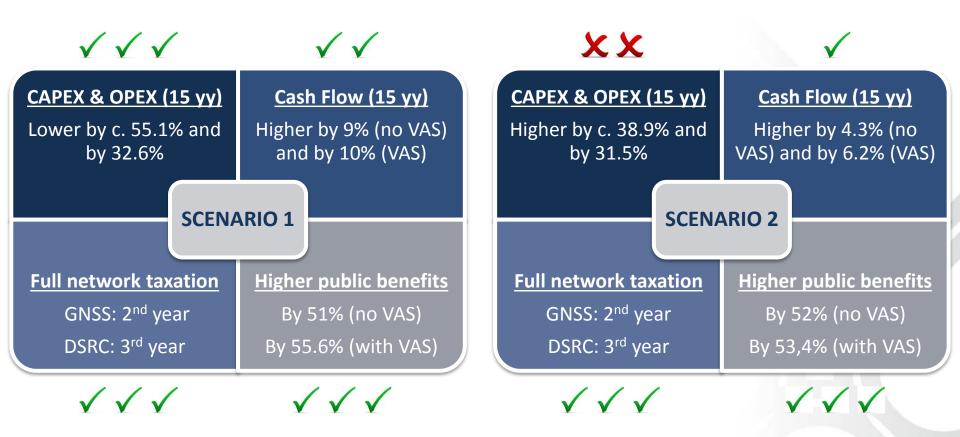
-6

-64

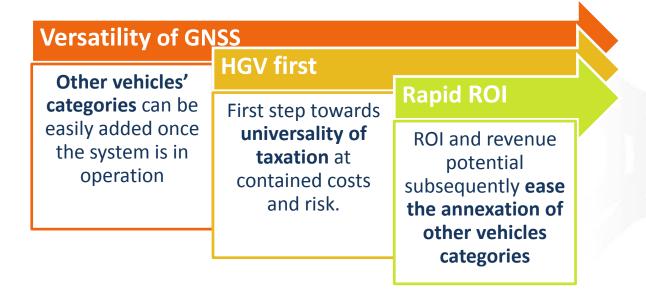
-2

-15

-489



The Spanish case: Results for GNSS



The Spanish case: Conclusions

- 3,000 gantries → DSRC **impractical** and with very **costly** maintenance
- Very rapid deployment only possible through GNSS → the most attractive solution in terms of the monetary and social benefits and the sustainability of the system in the long term
- Step-wise implementation is recommended:

GNSS ADOPTION FOR ROAD USER CHARGING IN EUROPE

Alberto Fernández-Wyttenbach Market Innovation Officer European GNSS Agency

> European Global Navigation Satellite Systems Agency

The present presentation can be interpreted only together with the oral comment accompanying it

2015