

NATURAL HAZARDS RISK MANAGEMENT IN HIGHWAYS WITH SATELLITE DATA

THE CASE OF A24 (PORTUGAL)

Paulo Barreto | General Manager Egis Road Operation Portugal

25 November 2022

AGENDA

- **01.** INTRODUCTION
- **02. DESCRIPTION OF THE PROJECT**
- **03.** GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM
- **04.** MEASURING GROUND MOTION WITH INSAR: A24 CASE STUDY
- **05.** CONCLUSIONS

INTRODUCTION

A24, Portugal

01.

INTRODUCTION

Periodic visual inspections of geotechnical structures

Important way of characterizing their condition status, identifying possible defects and scoping works required to maintain their performance during their life cycle

Imperceptible movements to the human eye may occur

■ Important to implement an appropriate system that enables early detection of possible destabilization

Goal

 Adoption of a mixed asset management approach, based on periodic visual inspections and monitoring of various types, in order to understand stability and plan interventions in the event of initial states of destabilization

DESCRIPTION OF THE PROJECT

A24, Portugal

02.

DESCRIPTION OF THE PROJECT

A24 MOTORWAY

(CONTRACT 2000-2030)

- 157 km, 2x2 lanes (mountainous motorway)
- 26 interchanges (3 for service areas)
- 70 viaducts / bridges
- 4 tunnels
- 145 retaining walls
- 86 reinforced slopes
- 1069 slopes
- 82 gantries
- 11 treatment basins

Norscut

■ > 7000 vertical signs.

DESCRIPTION OF THE PROJECT

GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM

A24, Portugal

03.

GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM

01. Inspections

02. Monitoring

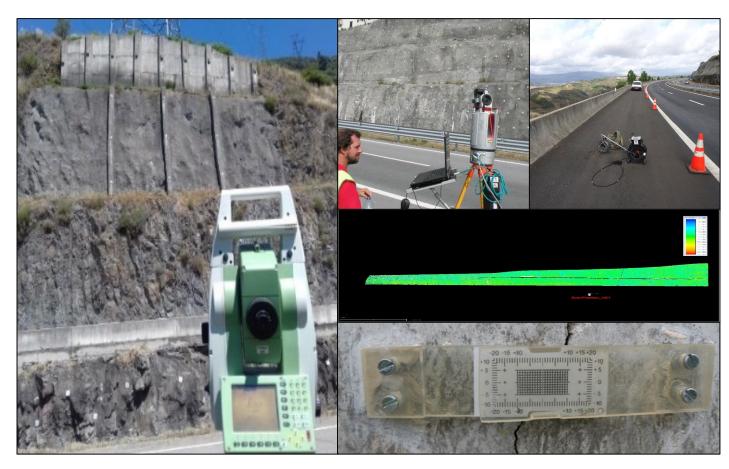
GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM

GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM

INSPECTIONS

- Periodic visual inspections
 - Daily
 - Routine
 - Detailed
 - Exceptional
- Output
 - Conservation state
 - Defects
 - Works required

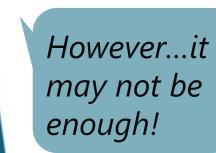
GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM


Natural hazards risk management in highways with satellite data: the case of A24 | Paulo Barreto | 25 November 2022

9

10

GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM

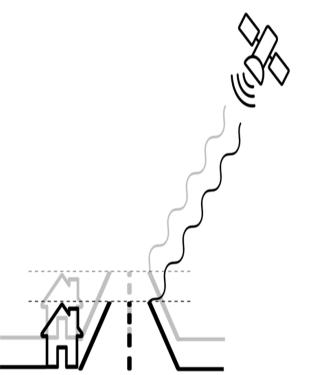

MONITORING

- Along with the inspections, monitoring is carried out:
 - Topographic
 - Inclinometer
 - Piezometer
 - Laser scan
 - Specific

JIS ANorscut

GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM

GEOTECHNICAL STRUCTURES MANAGEMENT SYSTEM


Natural hazards risk management in highways with satellite data: the case of A24 | Paulo Barreto | 25 November 2022

MEASURING GROUND MOTION WITH INSAR

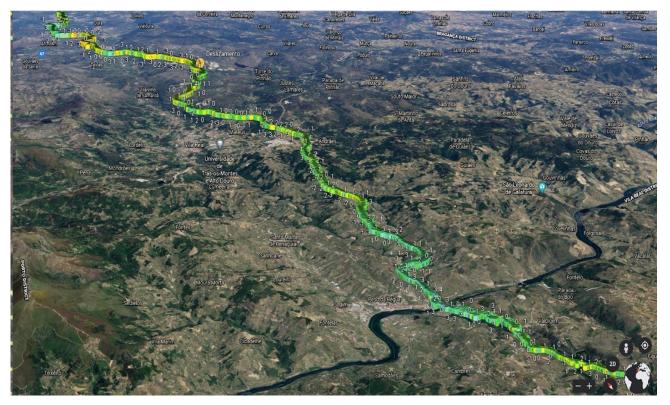
Case study: A24, Portugal

SAR INTERFEROMETRY

Advanced remote sensing techniques are used to detect ground deformation and monitor slope stability and subsidence throughout road and railway networks.

SENTINEL-1 SATELLITES

- Resolution: 5x20 meters
- Monitoring frequency: up to 6 days
- Accuracy: 4-6 mm



MEASURING GROUND MOTION WITH INSAR: A24 CASE STUDY

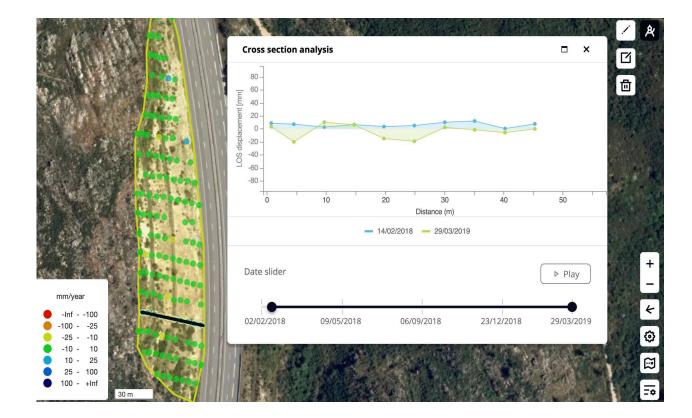
Natural hazards risk management in highways with satellite data: the case of A24 | Paulo Barreto | 25 November 2022

13

OVERVIEW

- Blind test
- Analysis of 157 km of motorway over a 1-year period (March 2018-March 2019)
- Over 100.000 measurement points obtained
- Identification of **11 areas** with cumulative displacement values between **2-5 cm**

SLOPE WITH LANDSLIDE


- Over 80 measurement points obtained
- 32 measurements per point over a 1year period

MEASURING GROUND MOTION WITH INSAR: A24 CASE STUDY

16

SLOPE WITH LANDSLIDE

- Greater instability detected on south edge of the slope, with a maximum displacement velocity of 22.33 mm/year
- Failure detected on last 2 measurement dates

MEASURING GROUND MOTION WITH INSAR: A24 CASE STUDY

CONCLUSIONS

A24, Portugal

05.

CONCLUSIONS

SATELLITE DATA USAGE

The experience performed with satellite data proved that it was possible to predict the landslide before the major event

18

19

CONCLUSIONS

MAIN ADVANTAGES

Safety

Enables the detection of destabilization in early stages

Budget reduction

Enables planning of smaller proactive interventions

Budget prediction

Enables prediction of mid-long-term interventions

CONCLUSIONS

MAIN ADVANTAGES

Traffic constraints reduction

Ultimately, the road will not be closed for traffic, reducing the impact for the road users

Risk

Enables development of more risk-based approach to inspection regime

20

CONCLUSIONS

ONGOING NEW EXPERIENCES

VEGETATION MANAGEMENT

- Uses High-Resolution optical data
- Vegetation and tree detection using machine learning techniques
- Tree height measurement and estimated area of impact (accuracy of 1-2 meters)
- Continuous monitoring of vitality indexes
- Species identification

CONCLUSIONS

CONTACTS

Follow us on Linked in

linkedin.com/company/egis-road-operation-portugal

www.egisportugal.pt

Paulo Barreto

General Manager paulo.barreto@egisportugal.pt

